Formation of a Quadratic Equation

IMPORTANT

Formation of a Quadratic Equation: Overview

This Topic covers sub-topics such as Formation of Quadratic Equation, Relation between Roots and Coefficients of a Quadratic Equation, Formation of Quadratic Equation with Given Roots and, Formation of Equations when Symmetric Relations are Given

Important Questions on Formation of a Quadratic Equation

HARD
IMPORTANT

If   α , β   are the roots of x2-px+1=0, and γ, δ are roots of x2+qx + 1 = 0,  then α-γβ-γα+δβ+δ is equal to

MEDIUM
IMPORTANT

If α,β are the roots of the equation, x-ax-b+c=0, find the roots of the equation, x-αx-β=c

HARD
IMPORTANT

If one root of the equation  x 2 +px+q=0  is the square of the other, then

HARD
IMPORTANT

A quadratic polynomial y = f(x) satisfies fx=fx+1-fx-122 for all real x. then the value of f0-f-1+f0-f1 is

MEDIUM
IMPORTANT

In a triangle  PQR,R=π2, if tanP2 and tanQ2  are distinct the roots of the equation   a x 2 +bx+c=0(a0), then –

MEDIUM
IMPORTANT

In a triangle PQR,R=π2, if tan(P2) and tan(Q2) are the roots of the equation   a x 2 +bx+c=0( a0 ) then

EASY
IMPORTANT

Let α, β be the roots of the equation  x2px+r=0 and α2, 2β be the roots of the equation x 2 qx+r=0 . Then the value of r is

MEDIUM
IMPORTANT

If one root of the equation  x2+px+q=0 is square of the other root, then

MEDIUM
IMPORTANT

Let x2+6x+4=0 be any quadratic equation and α,β are roots of that equation then, α34β24+α32β26+2α33β25α31β20+α28β23+3α30β21+3α29β22=

MEDIUM
IMPORTANT

The roots of the equation x2+px+q=0 are p and q such that p1, then

MEDIUM
IMPORTANT

If the sum of roots of a quadratic equation is twice the product of the roots and the product of roots is an even prime number, then the quadratic equation obtained by doubling the roots of the earlier quadratic equation is given by

EASY
IMPORTANT

If the roots of the equation x2+bx+c=0 are α & 1α, then the value of c is

HARD
IMPORTANT

If a,β are roots of the equation 4x2+2x-1=0 then α4+β4+4α2+2α is equal to

MEDIUM
IMPORTANT

If tan15° and tan30° are the roots of the equation x2+px+q=0, then pq=

HARD
IMPORTANT

Let α and β are roots of equation 7x2-5x-1=0, then limn r=0n17α-5r+17β-5r is:

MEDIUM
IMPORTANT

Let α and β be the roots of 6x2-2x+1=0 and Sn=αn+βn, then limnk=1nSk is equal to

HARD
IMPORTANT

If ax2-2bx+15=0, a,bR had repeated roots α and the equation x2-2bx+21=0 had roots α and β, then α2+β2 is

MEDIUM
IMPORTANT

If α,β are the roots of ax2+bx+c=0 then αaβ+b3-βaα+b3=

MEDIUM
IMPORTANT

The quadratic equations whose roots x1, and x2 satisfy the condition x12+x22=5, 3x15+x25=11x13+x23 (assume that x1, x2 are real) are

EASY
IMPORTANT

Let α,β are real number such that α2,β are the roots of the equation x2-px+8=0 and α,β2 are the roots of the equation x2-qx+1=0

then p+q is